dojox._sql._crypto._workerHandler
dojo.require("dojox._sql._crypto");
defined in dojox/_sql/_crypto.js
Usage
function (msg, sender) (view source)
var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16]; // Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] var Rcon = [ [0x00, 0x00, 0x00, 0x00], [0x01, 0x00, 0x00, 0x00], [0x02, 0x00, 0x00, 0x00], [0x04, 0x00, 0x00, 0x00], [0x08, 0x00, 0x00, 0x00], [0x10, 0x00, 0x00, 0x00], [0x20, 0x00, 0x00, 0x00], [0x40, 0x00, 0x00, 0x00], [0x80, 0x00, 0x00, 0x00], [0x1b, 0x00, 0x00, 0x00], [0x36, 0x00, 0x00, 0x00] ]; /* * AES Cipher function: encrypt 'input' with Rijndael algorithm * * takes byte-array 'input' (16 bytes) * 2D byte-array key schedule 'w' (Nr+1 x Nb bytes) * * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage * * returns byte-array encrypted value (16 bytes) */ function Cipher(input, w) { // main Cipher function [§5.1] var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4] for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; state = AddRoundKey(state, w, 0, Nb); for (var round=1; round<Nr; round++) { state = SubBytes(state, Nb); state = ShiftRows(state, Nb); state = MixColumns(state, Nb); state = AddRoundKey(state, w, round, Nb); } state = SubBytes(state, Nb); state = ShiftRows(state, Nb); state = AddRoundKey(state, w, Nr, Nb); var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4] for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; return output; } function SubBytes(s, Nb) { // apply SBox to state S [§5.1.1] for (var r=0; r<4; r++) { for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]]; } return s; } function ShiftRows(s, Nb) { // shift row r of state S left by r bytes [§5.1.2] var t = new Array(4); for (var r=1; r<4; r++) { for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back } // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): return s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf } function MixColumns(s, Nb) { // combine bytes of each col of state S [§5.1.3] for (var c=0; c<4; c++) { var a = new Array(4); // 'a' is a copy of the current column from 's' var b = new Array(4); // 'b' is a•{02} in GF(2^8) for (var i=0; i<4; i++) { a[i] = s[i][c]; b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; } // a[n] ^ b[n] is a•{03} in GF(2^8) s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3 s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3 s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3 s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3 } return s; } function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4] for (var r=0; r<4; r++) { for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; } return state; } function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2] var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys var w = new Array(Nb*(Nr+1)); var temp = new Array(4); for (var i=0; i<Nk; i++) { var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]; w[i] = r; } for (var i=Nk; i<(Nb*(Nr+1)); i++) { w[i] = new Array(4); for (var t=0; t<4; t++) temp[t] = w[i-1][t]; if (i % Nk == 0) { temp = SubWord(RotWord(temp)); for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t]; } else if (Nk > 6 && i%Nk == 4) { temp = SubWord(temp); } for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; } return w; } function SubWord(w) { // apply SBox to 4-byte word w for (var i=0; i<4; i++) w[i] = Sbox[w[i]]; return w; } function RotWord(w) { // rotate 4-byte word w left by one byte w[4] = w[0]; for (var i=0; i<4; i++) w[i] = w[i+1]; return w; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf * for each block * - outputblock = cipher(counter, key) * - cipherblock = plaintext xor outputblock */ function AESEncryptCtr(plaintext, password, nBits) { if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password; // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1 var nBytes = nBits/8; // no bytes in key var pwBytes = new Array(nBytes); for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; var key = Cipher(pwBytes, KeyExpansion(pwBytes)); key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long // initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes, // block counter in 2nd 8 bytes var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970 // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff; for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff; // generate key schedule - an expansion of the key into distinct Key Rounds for each round var keySchedule = KeyExpansion(key); var blockCount = Math.ceil(plaintext.length/blockSize); var ciphertext = new Array(blockCount); // ciphertext as array of strings for (var b=0; b<blockCount; b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) // again done in two stages for 32-bit ops for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff; for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8) var cipherCntr = Cipher(counterBlock, keySchedule); // -- encrypt counter block -- // calculate length of final block: var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1; var ct = ''; for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter byte-by-byte -- var plaintextByte = plaintext.charCodeAt(b*blockSize+i); var cipherByte = plaintextByte ^ cipherCntr[i]; ct += String.fromCharCode(cipherByte); } // ct is now ciphertext for this block ciphertext[b] = escCtrlChars(ct); // escape troublesome characters in ciphertext } // convert the nonce to a string to go on the front of the ciphertext var ctrTxt = ''; for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); ctrTxt = escCtrlChars(ctrTxt); // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency return ctrTxt + '-' + ciphertext.join('-'); } /* * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation * * for each block * - outputblock = cipher(counter, key) * - cipherblock = plaintext xor outputblock */ function AESDecryptCtr(ciphertext, password, nBits) { if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys var nBytes = nBits/8; // no bytes in key var pwBytes = new Array(nBytes); for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; var pwKeySchedule = KeyExpansion(pwBytes); var key = Cipher(pwBytes, pwKeySchedule); key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long var keySchedule = KeyExpansion(key); ciphertext = ciphertext.split('-'); // split ciphertext into array of block-length strings // recover nonce from 1st element of ciphertext var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES var counterBlock = new Array(blockSize); var ctrTxt = unescCtrlChars(ciphertext[0]); for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i); var plaintext = new Array(ciphertext.length-1); for (var b=1; b<ciphertext.length; b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff; for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff; var cipherCntr = Cipher(counterBlock, keySchedule); // encrypt counter block ciphertext[b] = unescCtrlChars(ciphertext[b]); var pt = ''; for (var i=0; i<ciphertext[b].length; i++) { // -- xor plaintext with ciphered counter byte-by-byte -- var ciphertextByte = ciphertext[b].charCodeAt(i); var plaintextByte = ciphertextByte ^ cipherCntr[i]; pt += String.fromCharCode(plaintextByte); } // pt is now plaintext for this block plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext } return plaintext.join(''); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext return str.replace(/[\0\t\n\v\f\r\xa0!-]/g|>, function(c) { return '!' + c.charCodeAt(0) + '!'; }); } // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker function unescCtrlChars(str) { // unescape potentially problematic control characters return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); }); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ function encrypt(plaintext, password){ return AESEncryptCtr(plaintext, password, 256); } function decrypt(ciphertext, password){ return AESDecryptCtr(ciphertext, password, 256); } /* End AES Implementation */ var cmd = msg.substr(0,4); var arg = msg.substr(5); if(cmd == "encr"){ arg = eval("(" + arg + ")"); var plaintext = arg.plaintext; var password = arg.password; var results = encrypt(plaintext, password); gearsWorkerPool.sendMessage(String(results), sender); }else if(cmd == "decr"){ arg = eval("(" + arg + ")"); var ciphertext = arg.ciphertext; var password = arg.password; var results = decrypt(ciphertext, password); gearsWorkerPool.sendMessage(String(results), sender); }
parameter | type | description |
---|---|---|
msg | ||
sender |